A/C Evaporator

I bought my A/C kit quite a few years ago from Airflow-Systems. I was shipped a so-called “Australian” evaporator, which is actually a product called a Monster Trunk System, part #685000-VUY from https://www.vintageair.com. There was a collection of metal parts and adapters in the kit, with no obvious way to set up the air flow and no instructions for this evaporator unit. The evaporator contains a 3 speed high volume scroll blower, which is ill suited to pressurizing the overhead console. Several other builders have supplemented this evaporator with an inline blower  which is more capable of pressurizing the overhead console. Yet another technique has been to forget about the overhead, turn the unit around and fit enough ducting to blow air straight into the cabin – see here.

I was already committed to a conventional mounting position, having done the inlet ducts and cutout for the overhead several years ago. What I needed to do was complete the evaporator outlet ducting, including an inline blower to suitably pressurize the overhead console, cabin flood air ducting, and a means to use the rear NACA vent air, via the Aerosport products NACA vent valve. This exercise is complicated by the fact that there isn’t a single right angle anywhere in the system, and it all rapidly turned into a 3D modelling exercise. First though, here’s a description of the evaporator inlet system I put together a few years ago:

The F-1006 bulkhead attachment for air to pressurize the overhead is a difficult area. In order to get enough air volume, a significant cutout is required. This mandates a doubler plate, and there is not much room to fit one. Edge distances, strength, clearances, Aerosport overhead console flange dimensions and screw positions for the rear baggage bulkhead all come into play. I wound up using both a shim plate and a doubler, in order to tie the doubler in with the rivets which secure the top of the F-1028 baggage bulkhead channel. Rivets for the doubler are flush on the rear side (where the manufactured heads are inside the overhead console air space) and flush on the front side where the baggage bulkhead overlaps the F-1006 flanges. I lowered and moved the normal position of the baggage bulkhead top screws, in theory they should have landed right in the middle of the Aerosport overhead lower flanges, in practice they are a little above this point but still easy enough to install.

This whole area is so busy, it is difficult to find a good way to “attach” the required air duct(s) to the bulkhead. It’s also not reasonable to have hard attachment points between the bulkhead and the evaporator/shelf, due to vibration and cracking. The idea of this design is to use a 3D printed bulkhead attachment block to achieve the following:

  • It can be fitted to the F-1006 bulkhead after the top skin is riveted on, sealed with some form of gasket material, and brings the air duct attachment plane clear of the bulkhead.
  • Two long #6 screws act as locating pins for the flange of the main attach duct.
  • A thick/soft gasket or manifold can be used between the rear of this bulkhead attachment point and the main duct, to seal airflow and provide vibration isolation.
  • If (when) the evaporator arrangement changes, a new 3D duct can be printed to mate with the existing bulkhead attachment point.

I use only one hole for airflow into the overhead, the side with more area (the F-1028 is offset from the center). Manifolding air into both sides complicates things and is pointless – what matters for overhead air is pressure, not volume. I wanted electrical connections into the overhead as well, so these are on the right hand side of the bulkhead, and will be sealed off in the overhead.

  • f20a
    Cutout for overhead air feed, with shim and doubler plates
  • f20b
    Holes for electrical conduits into overhead, with doubler plate
  • f20c
    3D printed template for bulkhead attach block, to verify it clears all obstacles.
  • f20d
    3D printed ABS bulkhead attach block, bulkhead side.
  • f20e
    Bulkhead attach block trial fit. Installation can only happen after top skin riveted on.
  • f20f
    A/C evaporator on shelf, with 3D printed inlets.
  • f20g
    3D printed inlets are contoured to match the curved front surfaces of the evaporator.
  • f54a
    Production inlet parts, made from tough epoxy, to replace the ABS prototypes
  • f54b
    Production inlet parts in place
  • f54c
    Cutouts done, nutplates in place
  • f54d
    I added a stiffener to the front face
  • f54e
    Fitting a rubber seal over the original evaporator inlet
  • f54f
    Cover plate in place, screwed on. Rubber pads on front of inlets, riveted on and sealant applied
  • f54g
    Cutout in evaporator shelf for receiver/dryer
  • f54h
    Clamping shroud for receiver/dryer

For the evaporator outlet, I designed a manifold which caters for the following requirements:

  • Fits onto the two irregular shaped outlets on the evaporator, with a simple rubber seal and some screws.
  • Provides an outlet for the inline blower. I used a 4″ blower, because it fits. A 3″ blower would probably also be adequate.
  • Provides a pair of outlets for cabin flood air. These should probably be 2.5 inches each, I used 2 inches because that’s the attachment size I have room for on the front (top) bulkhead.
  • Provides a pair of inlets for the Aerosport NACA vent valve, to feed vent air from outside into the system
  • Provides a place to mount a temperature probe
  • Can be assembled in-place, or if necessary by lowering the rear edge of the evaporator shelf (after removing the support).

The following pictures show what I came up with. I had the prototype fabricated in tough epoxy, and it fitted fine except for an indentation on the top that I made to clear the top stiffener. For some reason my measurements were off, and the indentation missed the stiffener by 20mm. I fixed this up and made some other improvements, and just ordered the final version which should arrive here in another week or so.

The 4″ blower just fits in the required space. I’m mounting it to a metal bracket that will be riveted to the cover plate I made up for the evaporator inlet. Also mounted on this cover plate are three relays (for the scroll fan) and a pwm controller for the inline blower. A wiring harness for this can be seen in the pictures, not properly laced up or secured yet. A high side pressure sensor, and evaporator air outlet temperature sensor, are included. The system controls will be on the overhead, except for the master “A/C on” switch which is on the front panel, pilot’s side. Turning the A/C off (before rolling) will be on the pre takeoff checklist, if necessary it can be re-engaged at some point during climb out. Part of the wiring includes a connector that could be used for a micro-controller that would be capable of climate control, if the rotary switch in the overhead is set to the “auto” position.

The final duct is to go from the outlet of the axial blower to the overhead. I printed some prototypes for this on my own consumer grade 3D printer using a flexible material. Once the shape was correct, I decided to order the production part in SLS Nylon. This will be very strong, but will still have enough flex to effectively detach the evaporator/blower assembly from the airframe. Although I will be assembling all of the final components with the top skin still partly open, everything is designed to be removable and reassemble-able after the skin is in place. It won’t necessarily be pleasant working back there in the hell hole, but it can be done. For assembly, I’m going to take advantage of the skin being off and will cheat as follows:

  • With everything in the tailcone finished, and with the evaporator/shelf removed, cleco the top skin on in its entirety. With Rosie outside on the rivet gun, and me inside, we’ll rivet the holes across the front and towards the rear on each of the three stiffeners.
  • Remove all the remaining clecos, allowing access from each side.
  • Fit the bulkhead adapter and the (flexible) duct from the inline blower outlet to the bulkhead. This can’t be done until after the (above) rivets are set.
  • Install the evaporator, shelf, outlet manifold, inline blower, NACA vent valve etc, using the access from each side to make the job easier this first time.
  • Fit the remaining refrigerant hoses etc. and charge the system. I plan to use an electric motor with a grooved pulley and a long serpentine belt as a means to run the compressor for this step.
  • Check for leaks and proper operation.
  • Cleco the skin back up, climb inside and finish riveting on the skin.
  • evap_out-1
    Evaporator outlet manifold
  • evap_out-2
    Top view
  • evap_out-3
    Bottom view
  • evap_out-4
    Right side view
  • evap_out-5
    Left side view, small hole is for temperature sensor
  • evap_out-6
    Front pump, vent attachments
  • evap_out-7
    Rear vent attachments, slot for top stiffener
  • evap_out-8
    Evaporator and vent attachment points
  • f56a
    Back from the printer
  • f56e
    Left side, temperature sensor
  • f56f
    Temperature sensor
  • f56g
    Aerosport NACA vent valve in place
  • f56h
    Left side cabin vent scat tube attachment point
  • f56i
    Right side clearances OK
  • f56j
    Top view
  • f56k
    There's just one problem....
  • f56b
    Bulkhead adapter 3D printed in tough epoxy
  • f56c
    Bulk attachment point
  • f56d
    Bulkhead adapter in place
  • ba2
    Bulkhead adapter design
  • ba1
    Bulkhead adapter, left side view
  • ba3
    Bulkhead adapter design
  • f56l
    Printing the bulkhead adapter prototype
  • f56m
    Finished bulkhead adaptor prototype
  • f56n
    TPU is very flexible
  • f56o
    Top view with bulkhead adaptor prototype in place
  • f56p
    Checking bulkhead adaptor prototype fit
  • f56q
    Side view of bulkhead adaptor prototype



Inlet plenum progress [2.0 hours]

Construction work has been spotty for the past few months due to some work commitments. Time to catch up on a few posts.

I received the prototype 3D printed inlet plenum, after a very long delay caused by Covid-19, a shipment lost in customs, reprinting a replacement, more shipping delays etc. This part was printed in ASA material by a vendor in Sweden. Quality is good apart from some areas where the wall thickness should have been greater.

The part fitted perfectly around / through the compressor, the air filter shroud mount etc. The inlet ramp was also good, perfectly horizontal and lined up with the opposite side (standard Showplanes fiberglass plenum) within 1mm, which is good enough for me. The front edge of the inlet ramp is too far forward, requiring me to trim too much of the cowling. While it would work, it doesn’t leave as much of the cowling inlet hole as I’d like, to get nutplates and some sort of overlapping seal in there. This is one of the areas where the wall thickness is also a bit low. Clearance on the bottom side to the cowling is good, a bit over 1/8″ at the closest point. The rear scat tube connection for a heat muff is also good.

Overall, close to a hole in one which I’m relieved about given how complex the part is. I can now proceed to finish the front of the baffles and around the governor. I’m going to need to address the wall thickness issue and trim back the front edge, which means re-printing the part. These are simple adjustments but I’m going to also look at whether any better alternatives exist than the ASA material I’ve used.

It’s really hard to see much from the pictures, because the 3D printed part is black, but they show the general idea.

  • f55a
    Prototype inlet plenum in place
  • f55b
    A/C fitting clearance OK
  • f55c
    A/C fitting clearance OK
  • f55d
    Prototype inlet plenum in place
  • f55e
    Good fit around A/C and into air filter shroud
  • f55f
    Good fit around A/C and into air filter shroud
  • f55g
    Horizontal, and about 1mm below right hand side plenum - good enough